Exercises for Basics of Quantum Systems
 
Visit Join Follow

(This pages uses MathJax to express mathematical expressions requiring internet connection.)

Exercises for Basics of Quantum Systems

prepared by Abuzer Yakaryilmaz (QLatvia)


1. If x=12, which of the following vectors can be a valid quantum state?

    a) (x)    b) (xx)    c) (xxx)    d) (xxxx)    e) (xxxxx)        


2. If |u=(12xy)R3 is a quantum state, which one of the following equations cannot be possible?

    a) x+y=12    b) x+y=34    c) xy=0    d) x2+y2=12    e) x2+y2=34        


3. We have a three state quantum system. If the system is in the quantum state |u=(131313+13x)R3, what is the probability of being in the third state?

    a) 19    b) 18    c) 16    d) 13    e) 12        


4. If |uR2 is a quantum state on the unit circle with angle is 2π3, what is |u?

    a) (1232)    b) (1232)    c) (3212)    d) (3212)    e) (3212)        


5. What is H4, where H is Hadamard operator?

    a) (12121212)    b) (12121212)    c) (1001)    d) (0110)    e) (1001)        


6. What is H7?

    a) (12121212)    b) (12121212)    c) (1001)    d) (0110)    e) (1001)        


7. We have a qubit in state |0. We apply the operators H,X,X,H,X in order, where X is NOT operator. What is the final state?

    a) |0    b) |1    c) |0    d) |1    e) 12|0+12|1        


8. We have a qubit in state |0. We apply the operators X,H,X,H,X in order. What is the final state?

    a) |0    b) |1    c) |0    d) |1    e) 12|012|1        


9. We apply a series of quantum operators to a single qubit that is in state |0 at the beginning. If we observe the state 0 at the end, which of the following combinations is not possible, where M stands for a measurement and we apply the operators from the left to the right?

    a) H,H,M    b) X,X,M    c) M,X,M,X,M    d) H,X,H,M    e) X,H,X,H,M        


10. We have five qubits, say q0,,q4 initially in zero states. We apply X operator to q0 and q4. For the rest of qubits, we apply either identity operator or X operator. After making a measurement, we read the values from the qubits q0,,q4 as b0,,b4, respectively.

If b=b4b0 is a binary number, which of the following decimal numbers cannot be a value of b?

    a) 13    b) 17    c) 23    d) 25    e) 31        


11. Hadamard operator H=(12121212) is a quantum operator and it preserves the length of any vector. Which one of the following operators is not a quantum operator? (Hint: Test each matrix with a few quantum vectors, e.g., |0, |1, |+, |, etc.)

    a) (12121212)    b) (12121212)    c) (12121212)    d) (12121212)    e) (12121212)        


12. What is XH?

    a) (12121212)    b) (12121212)    c) (12121212)    d) (12121212)    e) (12121212)        


13. What is (XH)2|0?

    a) |0    b) |+    c) |1    d) |    e) |0        


14. What is (XH)3|0?

    a) |+    b) |+    c) |1    d) |    e) |        


15. What is (XH)5|0?

    a) |+    b) |+    c) |1    d) |    e) |        


16. What is (XH)8|0?

    a) |0    b) |+    c) |1    d) |    e) |0        


17. When a qubit is in the quantum state |u=(3545), Hadamard operator is applied: |u=H|u. What is the probability of being in state |1 in the new quantum state |u?

    a) 0.02    b) 0.36    c) 0.50    d) 0.64    e) 0.98        


18. If |u=(x3x) is the quantum state of a qubit, what is the probability of being state |0?

    a) 0.1    b) 0.25    c) 0.50    d) 0.75    e) 0.9        


19. If |u=(x2x2xx) is the quantum state of a quantum system with four states, what is the probability of being in the state having amplitude 2x?

    a) 0    b) 0.2    c) 0.4    d) 0.6    e) 0.8        


20. We have a qubit, and we have a counter with value 0.

Repeat 20 times: What is the expected value of counter at the end of the iterations?

    a) 10    b) 5    c) 0    d) 5    e) 10